[ad_1]
American Psychiatric Association. DSM-5 Task Force (2013), Diagnostic and statistical manual of mental disorders: DSM-5 (Fifth edition. ed.). Washington, DC: American Psychiatric Publishing
Fournier, K. A., Hass, C. J., Naik, S. K., Lodha, N. & Cauraugh, J. H. Motor coordination in autism spectrum disorders: A synthesis and meta-analysis. J Autism Dev Disord 40(10), 1227–1240 (2010).
Google Scholar
Cassidy, S. et al. Dyspraxia and autistic traits in adults with and without autism spectrum conditions. Mol. Autism. 7, 48 (2016).
Google Scholar
Kanner, L. Autistic disturbances of affective contact. Nervous Child 2, 217–250 (1943).
Courchesne, E., Yeung-Courchesne, R., Press, G. A., Hesselink, J. R. & Jernigan, T. L. Hypoplasia of cerebellar vermal lobules VI and VII in autism. N. Engl. J. Med. 318(21), 1349–54 (1988).
Google Scholar
Paquet, A., Olliac, B., Bouvard, M. P., Golse, B. & Vaivre-Douret, L. The semiology of motor disorders in autism spectrum disorders as highlighted from a standardized neuro-psychomotor assessment. Front. Psychol. 7, 1292 (2016).
Google Scholar
Lim, Y. H., Partridge, K., Girdler, S. & Morris, S. L. Standing postural control in individuals with autism spectrum disorder: Systematic review and meta-analysis. J. Autism Dev. Disord. 47(7), 2238–2253 (2017).
Google Scholar
Zampella, C. J., Wang, L., Haley, M., Hutchinson, A. G. & de Marchena, A. Motor skill differences in autism spectrum disorder: A clinically focused review. Curr. Psychiatry Rep. 23(10), 64 (2021).
Google Scholar
Esposito, G. & Paşca, S. P. Motor abnormalities as a putative endophenotype for Autism Spectrum Disorders. Front. Integr. Neurosci. 7, 43 (2013).
Google Scholar
Henderson, S., Sudgen, D. A. & Barnett, A. L. Movement Assessment Battery for Children – Second Edition (Movement ABC-2) (Pearson Assessment, 2007).
Perin, C. et al. Physiological profile assessment of posture in children and adolescents with autism spectrum disorder and typically developing peers. Brain Sci. 10(10), 681 (2020).
Google Scholar
Webster, K. E., Wittwer, J. E. & Feller, J. A. Validity of the GAITRite walkway system for the measurement of averaged and individual step parameters of gait. Gait Posture 22(4), 317–321 (2005).
Google Scholar
Mancini, M. et al. Mobility lab to assess balance and gait with synchronized body-worn sensors. J. Bioeng. Biomed. Sci. 1, 007 (2011).
Google Scholar
Carse, B., Meadows, B., Bowers, R. & Rowe, P. Affordable clinical gait analysis: An assessment of the marker tracking accuracy of a new low-cost optical 3D motion analysis system. Physiotherapy 99(4), 347–351 (2013).
Google Scholar
Otte, K. et al. Accuracy and reliability of the Kinect Version 2 for clinical measurement of motor function. PLOS ONE 11(11), e0166532 (2016).
Google Scholar
Lum, J. et al. Meta-analysis reveals gait anomalies in autism. Autism Res. https://doi.org/10.1002/aur.2443 (2020).
Google Scholar
Rinehart, N. J. et al. Gait function in newly diagnosed children with autism: Cerebellar and basal ganglia related motor disorder. Dev Med Child Neurol 48(10), 819–824 (2006).
Google Scholar
Nobile, M. et al. Further evidence of complex motor dysfunction in drug naive children with autism using automatic motion analysis of gait. Autism Int. J. Res. Pract. 15(3), 263–283 (2011).
Google Scholar
Biffi, E. et al. Gait pattern and motor performance during discrete gait perturbation in children with autism spectrum disorders. Front. Psychol. 9, 2530 (2018).
Google Scholar
Eggleston, J. D., Landers, M. R., Bates, B. T., Nagelhout, E. & Dufek, J. S. Examination of gait parameters during perturbed over-ground walking in children with autism spectrum disorder. Res. Dev. Disabil. 74, 50–56 (2018).
Google Scholar
Crippa, A. et al. Use of machine learning to identify children with autism and their motor abnormalities. J. Autism Dev. Disord. 45(7), 2146–2156 (2015).
Google Scholar
Fournier, K. A. et al. Decreased static and dynamic postural control in children with autism spectrum disorders. Gait Posture 32(1), 6–9 (2010).
Google Scholar
Losse, A. et al. Clumsiness in children – do they grow out of it? A 10-year follow-up study. Dev. Med. Child Neurol. 33(1), 55–68 (1991).
Google Scholar
Sutera, S. et al. Predictors of optimal outcome in toddlers diagnosed with autism spectrum disorders. J. Autism Dev. Disord. 37(1), 98–107 (2007).
Google Scholar
Morrison, S. et al. Neuromotor and cognitive responses of adults with autism spectrum disorder compared to neurotypical adults. Exp. Brain Res. 236(8), 2321–2332. https://doi.org/10.1007/s00221-018-5300-9 (2018).
Google Scholar
Armitano, C. N., Bennett, H. J., Haegele, J. A. & Morrison, S. Assessment of the gait-related acceleration patterns in adults with autism spectrum disorder. Gait Posture 75, 155–162 (2020).
Google Scholar
Lehnhardt, F. G. et al. Psychosocial functioning of adults with late diagnosed autism spectrum disorders–a retrospective study. Fortschr. Neurol. Psychiatr. 80(2), 88–97 (2012).
Google Scholar
Hofvander, B. et al. Psychiatric and psychosocial problems in adults with normal-intelligence autism spectrum disorders. BMC Psychiatry https://doi.org/10.1186/1471-244X-9-35 (2009).
Google Scholar
Behrens, J. R. et al. Validity of visual perceptive computing for static posturography in patients with multiple sclerosis. Mult. Scler. 22(12), 1596–1606 (2016).
Google Scholar
Baron-Cohen, S., Wheelwright, S., Skinner, R., Martin, J. & Clubley, E. The autism-spectrum quotient (AQ): Evidence from asperger syndrome/high-functioning autism, malesand females, scientists and mathematicians. J. Autism Dev. Disord. 31, 5–17 (2001).
Google Scholar
Lord, C., Rutter, M., DiLavore, P., & Risi, S. (2001), Autism Diagnostic Observation Schedule (ADOS). Los Angeles: Western Psychological Services.
Rühl, D., Bölte, S., Feineis-Matthews, S. & Poustka, F. ADOS: Diagnostische Beobachtungsskala für Autistische Störungen (Huber, 2004).
American Psychiatric Association. DSM-IV-TR (2000), Diagnostic and statistical manual of mental disorders (4th ed.). Washington, DC: American Psychiatric Association.
Lord, C., Rutter, M. & Le Couteur, A. Autism diagnostic interview-revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J. Autism Dev. Disord. 24, 659–685 (1994).
Google Scholar
Bölte, S. & Poustka, F. Diagnostisches Interview für Autismus – Revidiert, Deutsche Fassung des Autism Diagnostic Interview – Revised von Michael Rutter, Ann Le Couteur und Catherine Lord (Hogrefe, 2001).
Wittchen, H.-U., Zaudig, M., & Fydrich, T. (1997), SKID. Strukturiertes Klinisches Interview für DSM-IV. Achse I und II. Handanweisung. Göttingen: Hogrefe.
Schmidt, K.-H. & Metzler, P. Wortschatztest: WST (Beltz Test, 1992).
The WHOQOL Group (1998), Development of the World Health Organization WHOQOL-BREF quality of life assessment, Psychol Med. 1998 May; 28(3):551–8.
Lemke, M., Wendorff, T., Mieth, B., Buhl, K. & Linnemann, M. Spatiotemporal gait patterns during over ground locomotion in major depression compared with healthy controls. J Psychiatr Res. 34, 277–283 (2000).
Google Scholar
Kindregan, D., Gallagher, L. & Gormley, J. Gait deviations in children with autism spectrum disorders: a review. Autism Res Treat 2015, 741480 (2015).
Google Scholar
Nayate, A. et al. Differentiation of high-functioning autism and Asperger’s disorder based on neuromotor behaviour. J. Autism Dev. Disord. 42(5), 707–717 (2012).
Google Scholar
Mosconi, M. W., Wang, Z., Schmitt, L. M., Tsai, P. & Sweeney, J. A. The role of cerebellar circuitry alterations in the pathophysiology of autism spectrum disorders. Front. Neurosci. 9, 296 (2015).
Google Scholar
Markou, P., Ahtam, B. & Papadatou-Pastou, M. Elevated levels of atypical handedness in autism: Meta-analyses. Neuropsychol. Rev. 27(3), 258–283 (2017).
Google Scholar
Shimoyama, I., Ninchoji, T. & Uemura, K. The finger-tapping test. A quantitative analysis. Arch. Neurol. 47, 681–684 (1990).
Google Scholar
Wang, Z. et al. Postural orientation and equilibrium processes associated with increased postural sway in autism spectrum disorder (ASD). J. Neurodev. Disord. 8, 43 (2016).
Google Scholar
Mosconi, M. W. & Sweeney, J. A. Sensorimotor dysfunctions as primary features of autism spectrum disorders. Sci, China Life Sci. 58(10), 1016–1023 (2015).
Google Scholar
Fitzpatrick, P. et al. Social motor synchronization: Insights for understanding social behavior in autism. J. Autism Dev. Disord. 47(7), 2092–2107 (2017).
Google Scholar
Blair, R. J. Responding to the emotions of others: dissociating forms of empathy through the study of typical and psychiatric populations. Conscious Cogn. 14(4), 698–718 (2005).
Google Scholar
Chartrand, T. L. & Lakin, J. L. The antecedents and consequences of human behavioral mimicry. Annu. Rev. Psychol. 64(1), 285–308 (2013).
Google Scholar
Sices, L. et al. Feasibility of conducting autism biomarker research in the clinical setting. J. Dev. Behav. Pediatr. 38(7), 483–492 (2017).
Google Scholar
Lombardo, M. V., Lai, M. C. & Baron-Cohen, S. Big data approaches to decomposing heterogeneity across the autism spectrum. Mol. Psychiatry 24, 1435–1450 (2019).
Google Scholar
Barbeau, E. B., Meilleur, A. A., Zeffiro, T. A. & Mottron, L. Comparing motor skills in autism spectrum individuals with and without speech delay. Autism Res. 8(6), 682–693 (2015).
Google Scholar
Levinger, P. et al. A real time biofeedback using Kinect and Wii to improve gait for post-total knee replacement rehabilitation: A case study report. Disabil. Rehabil. Assist. Technol. 11, 251–262 (2016).
Google Scholar
[ad_2]
Source link