[ad_1]
Beveridge, W. I. B. Foot-Rot in Sheep: A Transmissible Disease Due to Infection with Fusiformis nodosus (n. sp.). Studies on its Cause, Epidemiology, and Control (Springer, 1941).
Zanolari, P., Dürr, S., Jores, J., Steiner, A. & Kuhnert, P. Ovine footrot: A review of current knowledge. Vet. J. 271, 105647. https://doi.org/10.1016/j.tvjl.2021.105647 (2021).
Google Scholar
Bennett, G., Hickford, J., Sedcole, R. & Zhou, H. Dichelobacter nodosus, Fusobacterium necrophorum and the epidemiology of footrot. Anaerobe 15, 173–176. https://doi.org/10.1016/j.anaerobe.2009.02.002 (2009).
Google Scholar
Knappe-Poindecker, M. et al. Cross-infection of virulent Dichelobacter nodosus between sheep and co-grazing cattle. Vet. Microbiol. 170, 375–382. https://doi.org/10.1016/j.vetmic.2014.02.044 (2014).
Google Scholar
Belloy, L., Giacometti, M., Boujon, P. & Waldvogel, A. Detection of Dichelobacter nodosus in wild ungulates (Capra ibex ibex and Ovis aries musimon) and domestic sheep suffering from foot rot using a two-step polymerase chain reaction. J. Wildl. Dis. 43, 82–88. https://doi.org/10.7589/0090-3558-43.1.82 (2007).
Google Scholar
Ghimire, S., Egerton, J. & Dhungyel, O. Transmission of virulent footrot between sheep and goats. Aust. Vet. J. 77, 450–453 (1999).
Google Scholar
Grøneng, G. M., Vatn, S., Kristoffersen, A. B., Nafstad, O. & Hopp, P. The potential spread of severe footrot in Norway if no elimination programme had been initiated: A simulation model. Vet. Res. 46, 10. https://doi.org/10.1186/s13567-015-0150-y (2015).
Google Scholar
Muzafar, M. et al. The role of the environment in transmission of Dichelobacter nodosus between ewes and their lambs. Vet. Microbiol. 179, 53–59 (2015).
Google Scholar
Locher, I., Giger, L., Frosth, S., Kuhnert, P. & Steiner, A. Potential transmission routes of Dichelobacter nodosus. Vet. Microbiol. 218, 20–24 (2018).
Google Scholar
Egerton, J., Roberts, D. & Parsonson, I. The aetiology and pathogenesis of ovine foot-rot: I. A histological study of the bacterial invasion. J. Comp. Pathol. 79, 207. https://doi.org/10.1016/0021-9975(69)90007-3 (1969).
Google Scholar
Egerton, J. R. & Parsonson, I. M. Benign Footrot: A specific interdigital dermatitis of sheep associated with infection by less proteolytic strains of Fusiformis nodosus. J. Comp. Pathol. 45, 345–349. https://doi.org/10.1111/j.1751-0813.1969.tb06606.x (1969).
Google Scholar
Raadsma, H. W. & Egerton, J. R. A review of footrot in sheep: Aetiology, risk factors and control methods. Livest Sci. 156, 106–114. https://doi.org/10.1016/j.livsci.2013.06.009 (2013).
Google Scholar
Abbott, K. A. & Egerton, J. R. Effect of climatic region on the clinical expression of footrot of lesser clinical severity (intermediate footrot) in sheep. Aust. Vet. J. 81, 756–762. https://doi.org/10.1111/j.1751-0813.2003.tb14609.x (2003).
Google Scholar
Riffkin, M. C., Wang, L.-F., Kortt, A. A. & Stewart, D. J. A single amino-acid change between the antigenically different extracellular serine proteases V2 and B2 from Dichelobacter nodosus. Gene 167, 279–283. https://doi.org/10.1016/0378-1119(95)00664-8 (1995).
Google Scholar
Stauble, A., Steiner, A., Frey, J. & Kuhnert, P. Simultaneous detection and discrimination of virulent and benign Dichelobacter nodosus in sheep of flocks affected by foot rot and in clinically healthy flocks by competitive real-time PCR. J. Clin. Microbiol. 52, 1228–1231. https://doi.org/10.1128/JCM.03485-13 (2014).
Google Scholar
Kraft, A. F., Strobel, H., Hilke, J., Steiner, A. & Kuhnert, P. The prevalence of Dichelobacter nodosus in clinically footrot-free sheep flocks: A comparative field study on elimination strategies. BMC Vet. Res. 16, 21 (2020).
Google Scholar
Ardüser, F. et al. Dichelobacter nodosus in sheep, cattle, goats and South American camelids in Switzerland: Assessing prevalence in potential hosts in order to design targeted disease control measures. Prev. Vet. Med. 178, 104688. https://doi.org/10.1016/j.prevetmed.2019.05.001 (2020).
Google Scholar
Greber, D. et al. Pooling of interdigital swab samples for PCR detection of virulent Dichelobacter nodosus. J. Vet. Diagn. Invest. 30, 205–210. https://doi.org/10.1177/1040638717733508 (2018).
Google Scholar
Greber, D., Bearth, G., Luchinger, R., Schuepbach-Regula, G. & Steiner, A. Elimination of virulent strains (aprV2) of Dichelobacter nodosus from feet of 28 Swiss sheep flocks: A proof of concept study. Vet. J. 216, 25–32. https://doi.org/10.1016/j.tvjl.2016.06.015 (2016).
Google Scholar
Abbott, K. & Lewis, C. Current approaches to the management of ovine footrot. Vet J 169, 28–41 (2005).
Google Scholar
Graham, N. P. H. & Egerton, J. R. Pathogenesis of ovine foot-rot: The role of some environmental factors. Aust. Vet. J. 44, 235–240. https://doi.org/10.1111/j.1751-0813.1968.tb09092.x (1968).
Google Scholar
Emery, D., Stewart, D. & Clark, B. The comparative susceptibility of five breeds of sheep to footrot. Aust. Vet. J. 61, 85–88. https://doi.org/10.1111/j.1751-0813.1984.tb15524.x (1984).
Google Scholar
Skerman, T. M., Erasmuson, S. K. & Morrison, L. M. Duration of resistance to experimental footrot infection in Romney and Merino sheep vaccinated with Bacteroides nodosus oil adjuvant vaccine. N. Z. Vet. J. 30, 27–31. https://doi.org/10.1080/00480169.1982.34867 (1982).
Google Scholar
Mucha, S., Bunger, L. & Conington, J. Genome-wide association study of footrot in Texel sheep. Genet. Sel. Evol. 47, 35. https://doi.org/10.1186/s12711-015-0119-3 (2015).
Google Scholar
Ferguson, D. M. Unlocking the Perfect Sheep. http://www.perfectsheep.co.nz/feetfirst
Storms, J. et al. Prevalence of Dichelobacter nodosus and ovine footrot in german sheep flocks. Animals 11, 1102. https://doi.org/10.3390/ani11041102 (2021).
Google Scholar
Whittington, R. J. Observations on the indirect transmission of virulent ovine footrot in sheep yards and its spread in sheep on unimproved pasture. Aust. Vet. J. 72, 132–134. https://doi.org/10.1111/j.1751-0813.1995.tb15032.x (1995).
Google Scholar
Gelasakis, A., Kalogianni, A. & Bossis, I. Aetiology, risk factors, diagnosis and control of foot-related lameness in dairy sheep. Animals 9, 509. https://doi.org/10.3390/ani9080509 (2019).
Google Scholar
Angell, J. W., Grove-White, D. H. & Duncan, J. S. Sheep and farm level factors associated with footrot: A longitudinal repeated cross-sectional study of sheep on six farms in the UK. Vet. Rec. 182, 293–293. https://doi.org/10.1136/vr.104553 (2018).
Google Scholar
Maboni, G., Frosth, S., Aspan, A. & Tötemeyer, S. Ovine footrot: New insights into bacterial colonisation. Vet. Rec. 179, 228. https://doi.org/10.1136/vr.103610 (2016).
Google Scholar
Clifton, R., Giebel, K., Liu, N. L., Purdy, K. J. & Green, L. E. Sites of persistence of Fusobacterium necrophorum and Dichelobacter nodosus: A paradigm shift in understanding the epidemiology of footrot in sheep. Sci. Rep. 9, 1–11 (2019).
Google Scholar
Greber, D., Doherr, M., Drögemüller, C. & Steiner, A. Occurrence of congenital disorders in Swiss sheep. Acta Vet. Scand. 55, 1–7. https://doi.org/10.1186/1751-0147-55-27 (2013).
Google Scholar
Caetano, P., Bettencourt, E. & Branco, S. Reviewing footrot in sheep. JVSAH 6, 405–413 (2018).
Allworth, M. & Egerton, J. Comparison of footbathing and vaccination to control ovine footrot in an experimentally infected flock. Aust. Vet. J. 96, 395–399 (2018).
Google Scholar
Winter, J. R., Kaler, J., Ferguson, E., KilBride, A. L. & Green, L. E. Changes in prevalence of, and risk factors for, lameness in random samples of English sheep flocks: 2004–2013. Prev. Vet. Med. 122, 121–128 (2015).
Google Scholar
Skerman, T. M., Johnson, D. L. & Clarke, J. N. Clinical footscald and footrot in a New Zealand Romney flock: Phenotypic and genetic parameters. Aust. J. Agric. Res. 39, 907. https://doi.org/10.1071/AR9880907 (1988).
Google Scholar
Nieuwhof, G. J., Conington, J., Bunger, L., Haresign, W. & Bishop, S. C. Genetic and phenotypic aspects of foot lesion scores in sheep of different breeds and ages. Animal 2, 1289–1296. https://doi.org/10.1017/S1751731108002577 (2008).
Google Scholar
Schwartzkoff, C. et al. The effects of antigenic competition on the efficacy of multivalent footrot vaccines. Aust. Vet. J. 70, 123–126. https://doi.org/10.1111/j.1751-0813.1993.tb06101.x (1993).
Google Scholar
Wassink, G., Grogono-Thomas, R., Moore, L. & Green, L. Risk factors associated with the prevalence of footrot in sheep from 1999 to 2000. Vet. Rec. 152, 351–358 (2003).
Google Scholar
Egerton, J. et al. Eradication of virulent footrot from sheep and goats in an endemic area of Nepal and an evaluation of specific vaccination. Vet. Rec. 151, 290–295 (2002).
Google Scholar
Duncan, J. S. et al. Impact of footrot vaccination and antibiotic therapy on footrot and contagious ovine digital dermatitis. Vet. Rec. 170, 462. https://doi.org/10.1136/vr.100363 (2012).
Google Scholar
Raadsma, H., McEwan, J., Stear, M. & Crawford, A. Genetic characterisation of protective vaccine responses in sheep using multi-valent Dichelobacter nodosus vaccines. Vet. Immunol. Immun. 72, 219–229. https://doi.org/10.1016/S0165-2427(99)00135-X (1999).
Google Scholar
Skerman, T. & Moorhouse, S. Broomfield Corriedales: A strain of sheep selectively bred for resistance to footrot. N. Z. Vet. J. 35, 101–106. https://doi.org/10.1080/00480169.1987.35399 (1987).
Google Scholar
Patterson, R. & Patterson, H. J. N.Z. Mountain Lands Inst, 64–75.
Ferguson, D. M. FeetFirst Update. (2017).
Raadsma, H. W. & Dhungyel, O. P. A review of footrot in sheep: New approaches for control of virulent footrot. Livest Sci. 156, 115–125. https://doi.org/10.1016/j.livsci.2013.06.011 (2013).
Google Scholar
Aepli, M. et al. Bundesamt für Lebensmittelsicherheit und Veterinärwesen (BLV) und Bundesamt für Landwirtschaft (BLW). (ETH Zürich, 2016).
Kuhnert, P. et al. Early infection dynamics of Dichelobacter nodosus during an ovine experimental footrot in contact infection. Schweiz Arch. Tierh 161, 465–472. https://doi.org/10.17236/sat00215 (2019).
Google Scholar
[ad_2]
Source link